
The “Why did you do that?” Button: Answering
Why-questions for end users of Robotic Systems

Vincent J. Koeman1, Louise A. Dennis2, Matt Webster2, Michael Fisher2, and
Koen Hindriks3

1 Delft University of Technology, The Netherlands
v.j.koeman@tudelft.nl

2 University of Liverpool, UK
{L.A.Dennis, M.Webster, MFisher}@liverpool.ac.uk

3 Vrije Universiteit Amsterdam, The Netherlands
k.v.hindriks@vu.nl

Abstract. The issue of explainability for autonomous systems is becom-
ing increasingly prominent. Several researchers and organisations have
advocated the provision of a “why did you do that?” button which al-
lows a user to interrogate a robot about its choices and actions.
We take previous work on debugging cognitive agent programs and apply
it to the question of supplying explanations to end users in the form of
answers to why-questions. These previous approaches are based on the
generation of a trace of events in the execution of the program and then
answering why-questions using the trace. We implemented this frame-
work in the agent infrastructure layer and, in particular, the Gwen-
dolen programming language it supports – extending it in the process
to handle the generation of applicable plans and multiple intentions.
In order to make the answers to why-questions comprehensible to end
users we abstract away from some events in the trace and employ appli-
cation specific predicate dictionaries in order to translate the first-order
logic presentation of concepts within the cognitive agent program in nat-
ural language. A prototype implementation of these ideas is provided.

1 Introduction

As Autonomous Systems become more prevalent in society, issues related to
the ways in which humans interact with such systems become more important.
Among these issues is the question of transparency and, in particular, explain-
ability. Wortham and Theodorou [37], and Sheh [25] (among others) have argued
that the ability for a robot (and by extension any autonomous system) to pro-
vide explanations of its behaviour helps users develop accurate mental models
of the robot’s reasoning and so interact better with the robot and develop trust.
Charisi et al. [6], Turner [27] and The IEEE Global Initiative on Ethics of Au-
tonomous and Intelligent Systems [26] in particular advocate the provision of a
“why did you do that?” button to help the user understand a robot’s behaviour.

We take as our focus autonomous systems which employ a cognitive agent
to make high level decisions such as [30, 29, 39]. One of the reasons often put

louisedennis
Placed Image

2 Authors Suppressed Due to Excessive Length

forward for the employment of cognitive agents in this role is their in principle
ability to explain their decisions to end users. However, in practice, little research
has been performed in actually providing such explanations of reasoning.

There are a number of key problems in the provision of explanations. Firstly
they require a backward view of the program execution (in contrast to common
debugging practice in which a breakpoint is set and the program is then run
forwards from the breakpoint) Secondly log files, which are the obvious solution
to the first problem tend to be verbose and their production can cause significant
performance overheads. These problems are exacerbated when all the informa-
tion needed to understand why something is taking place must be captured.

In this paper we combine work on the debugging of cognitive agent programs
in the Beliefs-Desires-Intentions (BDI) paradigm [18] with work on the provision
of explanations for programmers in GOAL [16] and AgentSpeak [33]. Koeman
et al. [18] generate an omniscient trace of key events that take place during
program execution in a manner which limits the overhead cost of producing
the trace. Each event stores enough information about the agent’s mental state
to reconstruct the state of the program execution at that point. This trace is
supported by tools allowing it to be viewed at a high-level of abstraction hiding
extraneous information unless a user wants to see it.

We have implemented omniscient tracing in the Agent Infrastructure Layer
(AIL) [8, 10], a prototyping tool for verifiable interpreters for cognitive agent
programming languages, with particular attention to the Gwendolen program-
ming language [9] but also consider the extent to which this framework is generic.
In applying this framework to the AIL we extended the events considered be-
yond changes to the agent’s mental state to include a number of events involved
in the generation of plans and the handling of intentions.

The development of omniscient debugging was driven, in part, by a desire to
support programmers in answering why-questions. Programmers can interrogate
the high level trace at specific points in the program execution and ask “why
did you do that” (as outlined in [16]). Winikoff [33] reports on a similar system
constructing why and why-not explanations over traces for AgentSpeak.

We implemented this idea in our AIL-based omniscient debugging frame-
work. We developed an explanation generation framework for end users that is
specific to Gwendolen, providing explanations at a higher level of abstraction
than previously considered, and using predicate dictionaries to provide natural
language substitutes for application specific logical predicates. This implemen-
tation generates explanations when multiple intentions are being executed in an
interleaved fashion (something omitted from [33]).

2 Background and Related Work

2.1 Cognitive Agent Programming

At its most general, an agent is an abstract concept that represents an au-
tonomous computational entity that makes its own decisions [35]. A general

Title Suppressed Due to Excessive Length 3

agent is simply the encapsulation of some distributed computational component
within a larger system. However, in many settings, something more is needed.
Rather than just having a system which makes its own decisions in an opaque
way, it is increasingly important for the agent to have explicit reasons (that it
could explain, if necessary) for making one choice over another.

Cognitive agents [3, 22, 36] enable the representation of this kind of reasoning.
Such an agent has explicit reasons for making the choices it does. We often
describe a cognitive agent’s beliefs and goals, which in turn determine the agent’s
intentions. Such agents make decisions about what action to perform, given their
current beliefs, goals and intentions. This view of cognitive agents is encapsulated
within the Beliefs-Desires-Intentions (BDI) model [21, 22, 23]. Beliefs represent
the agent’s (possibly incomplete, possibly incorrect) information about itself,
other agents, and its environment, desires represent the agent’s long-term goals
while intentions represent the goals that the agent is actively pursuing (the
representation of intentions often includes partially instantiated and/or executed
plans and so combines the goal with its intended means).

There are many different agent programming languages and agent platforms
based, at least in part, on the BDI approach [24, 1, 7, 20, 15]. Agents programmed
in these languages commonly contain a set of beliefs, a set of goals, and a set of
plans. Plans determine how an agent acts based on its beliefs and goals and form
the basis for practical reasoning (i.e., reasoning about actions) in such agents.
As a result of executing a plan, the beliefs and goals of an agent may change
and actions may be executed.

It is generally recognised that debugging BDI agent programs is hard [31, 32]
(and by extension that agent behaviour can be difficult to understand even
when performing as desired). In particular agents react to events in dynamic
environments; events which may combine in unexpected ways and which may be
handled by the agent “in parallel” with each other. Furthermore many cognitive
agent languages have provision for failure handling which, again, may interact
in complex ways with the behaviour of the rest of the program.

2.2 Explanations in Cognitive Agent Systems and “Why” Questions

Ko and Myers [17] created the WHY-LINE tool, which allows developers to
pose “why did” or “why didn’t” questions about the output of Java programs.
A trace is generated in memory through bytecode instrumentation, containing
everything necessary for reproducing a specific execution. From this trace, a
set of questions and associated answers is generated. The authors note that
their approach is not suited for executions that span more than a few minutes
or executions that process or produce substantial amounts of data. However,
their results do show that the approach enables developers to debug failures
substantially faster.

Hindriks [16] and Winikoff [33] both consider a similar model applied to the
debugging of cognitive agent programs in GOAL and AgentSpeak respectively.
Of these [16] is the earlier and has a more informal treatment than [33] which
sought to extend, formalise and implement the proposal. The two approaches are

4 Authors Suppressed Due to Excessive Length

therefore similar in their underlying conception and we use them as the basis for
our work. The key idea is that a trace of events is stored as a log. Each event in
the trace can be interrogated and an explanation constructed in a systematic way
using information either stored in that event and/or by referring to a previous
event in the log. For instance the explanation for why some action was executed
might be that “the action’s preconditions held and a plan was previously selected
which contained the action”. Explanations can then also be given for why the
preconditions succeeded and/or why the plan was selected.

Koeman et al. [18] propose a trace based mechanism for debugging cognitive
agent programs. Although concerned with many of the same issues as [16] and
[33] (and indeed, intended as support for the mechanisms proposed in [16]) the
authors focus on more foundational questions of what information needs to be
stored in a trace in order to reconstruct the state of an agent at that point, and
the performance overhead of storing such traces for a program. They conclude
that if a trace stored the key events in agent execution, namely the changes to
the agent’s mental state, then the program run could be reconstructed without
the significant performance impact associated with storing the full state of an
agent at each step in execution. They develop a space-time visualiser for these
traces which allows a programmer to inspect the trace and query the state of
the underlying program at any point.

Hindriks [16] and Koeman et al. [18] consider primarily changes to an agent’s
mental state (i.e., beliefs and goals) in their tracing and debugging frameworks.
Winikoff [33] extends this to include traces and explanations for the selection
of plans but assumes that the entirety of a plan is executed before anything
else happens. The AIL allows interleaved execution of plans by manipulating
intentions. In our work therefore, we integrated the approach in [33] with that
of [18] and then extended it to the handling of multiple intentions4.

A few systems have considered the question of providing explanations specif-
ically for end users of cognitive agent systems. In Harbers [14] explanations of
agent behaviour are generated based on the beliefs and goals of the agents us-
ing a goal hierarchy paired with a behaviour log. Winikoff et al. [34] presents a
similar system but adds the concept of preferences (or valuings) to the explana-
tions presented to end users. This was evaluated using hand-crafted explanations
generated according to the methodology outlined in the paper.

2.3 The Agent Infrastructure Layer and Gwendolen

The Agent Infrastructure Layer (AIL) [8] is a set of Java classes intended to assist
in the development of BDI-style programming languages. Gwendolen [9] is the
most mature language in this framework.

The AIL provides default data structures for agents, beliefs, goals, plans and
intentions. Individual languages implemented in the AIL define custom reasoning
4 Though it should be noted that the implementation of omniscient debugging in

GOAL also handles GOAL’s module mechanism (although this is not reported in
depth in [18]) which is not entirely dissimilar to the concept of intention in the AIL.

Title Suppressed Due to Excessive Length 5

cycles for agent deliberation. However the toolkit has an underlying assumption
that such reasoning cycles will typically involve the following steps in some order:
– Perception which creates sets of new beliefs and removes beliefs that no

longer hold.
– Posting events (either as new intentions, or added to existing intentions)

when beliefs are acquired or removed and goals are acquired or removed.
– Selecting plans to react to events.
– Selecting among intentions which represent partially processed plans or un-

handled events.
– Processing one (or more) steps in an intention which include adding and

removing beliefs and goals and executing actions.
These default steps therefore form the core events supported by our implemen-
tation of omniscient debugging within the AIL.

Gwendolen Operational Semantics We use Gwendolen as our key imple-
mentation language. We present here a simplified version of the Gwendolen
operational semantics which is presented in full in [9]. The semantics presented
here assumes all terms are ground (so ignores issues surrounding the handling of
unifiers), and ignores a number of language features such as locking and suspend-
ing intentions, dropping goals, agent sleeping and waking behaviour, message
handling and special cases such as transitions for handling goals that can’t be
planned. The intention is to present enough information to allow our framework
to be understood. This operational semantics is shown in Figure 1. Following [33]
we annotate the transitions (expressions above the arrow) with the events that
are stored by the omniscient debugger. These are discussed further in Section 3.

The Gwendolen reasoning cycle shown here has five stages A,B,C,D and
E5. One transition in each stage is executed in turn. In the semantics we show
the stage that a transition applies to with a letter to the right of the rule. A
Gwendolen agent starts in stage A and so (1) is the first rule to apply, followed
by (2) and so on. In stage D whichever rule applies to the top of the current
intention is applied and then the reasoning cycle moves on to stage E.

BDI languages use intentions to store the intended means for achieving goals
– this is generally represented as some form of deed stack (deeds include ac-
tions, belief updates, and the commitment to goals). In Gwendolen intention
structures6 also maintain information about the event that triggered them (the
addition or removal of a belief or the posting of a (sub-)goal). Gwendolen ag-
gregates this information: an intention becomes a stack of tuples of an event and
a deed. Each tuple associates a particular deed with the event that caused the
deed to be placed on the intention. New events are associated with an empty
deed, ε.

We represent an agent state as a tuple 〈i, I, B,A〉 where: i is the current
intention; I is a queue of intentions {i1, i2, ..}; B is a set of the agent’s beliefs;
and A is a set of currently applicable plans for the current intention i.
5 The implementation of Gwendolen contains a sixth stage for message handling.
6 A refinement of the AIL’s intention structure which is more general.

6 Authors Suppressed Due to Excessive Length

Sint(I ∪ {i}) = (i ′, I ′)

〈i, I , B, ∅〉 seli(i)−−−−→ 〈i ′, I ′, B, ∅〉
A (1)

G(i, I , B) = A

〈i, I , B, ∅〉 genp(A,i);Γ−−−−−−−−→ 〈i, I , B,A〉
B (2)

(e, ds) = Splan(A)

〈i, I , B,A〉 selp(e,ds,i)−−−−−−−→ 〈(e, ds) @ tli(i), I , B, ∅〉
C (3)

B |= g
〈(e,+!g);ii, I , B, ∅〉 → 〈i, I , B, ∅〉

D (4)

B 6|= g

〈(e,+!g);ii, I , B, ∅〉
add((e,+!g),i)−−−−−−−−−→ 〈(+!g, ε);i(e,+!g);ii, I , B, ∅〉

D (5)

〈(e,+b);ii, I ,B, ∅〉
crei((+b,ε))−−−−−−−→ 〈i, I ∪ (+b, ε),B ∪ {b}, ∅〉

D (6)

〈(e,−b);ii, I ,B, ∅ . . .〉
crei((−b,ε))−−−−−−−−→ 〈i, I ∪ (−b, ε),B\{b}, ∅〉

D (7)

do(a)

〈(e, a);ii, I , B, ∅〉
act(a,i)−−−−−→ 〈i, I , B, ∅〉

D (8)

P = Percepts OP = {b | b ∈ B\P ∧ percept(b)}

〈i, I ,A,B〉 Π−→
〈i, I ∪ {(percept,+b) | b ∈ P\B} ∪ {(percept,−b) | b ∈ OP},B,A〉

E (9)

Fig. 1. Simplified Gwendolen Semantics

A Gwendolen program consists of a set of plans,∆, of the form, e : {g} ← ds
(where ds is a sequence of deeds to be executed if event, e is posted and guard,
g, follows from the agent’s beliefs and goals), a set of initial beliefs, B, and a set
of initial goals, Gs. In an agent’s initial state the current intention is null, the
intention set consists of one intention for each of the initial goals provided by the
programmer of the form (start,+!g). The belief base is B and the applicable
plans are empty.

(1) governs the selection of intentions. Sint is an application specific function
that selects one intention out of a set of intentions and returns a tuple of the
selected intention and the set without that intention in it. By default Sint oper-
ates on a queue data structure and so in general the current intention is placed
at the end of the queue and the intention at the top of the queue is selected.

(2) represents the process of inspecting the plan library and finding plans
that match the current intention. These are transformed into applicable plans
and returned by the function G. A plan, e : {g} ← ds matches an intention if e
matches the event in the top tuple of the intention, g is a logical consequence
of the agent’s beliefs and goals (goals are inferred from the events posted in all
intentions) and the deed in the top tuple of the intention is ε. Applicable plans
are an interim data structure that describe how the plan changes the current

Title Suppressed Due to Excessive Length 7

intention. An applicable plan describes new tuples to be placed on the top of
the intention stack (replacing the existing top tuple). A tuple is created for each
deed in ds and associated with e. Where the top deed on the intention is not
ε (“no plan yet”) then G simply returns the existing top tuple so there is no
change to the intentin and it continues to be processed as normal7.

(3) uses the application specific function Splan to pick an applicable plan
to be applied. By default, this treats the set as a list and picks the first plan
based on the order they appear in the Gwendolen program. We use the syntax
(e, ds) @ tli(i) to represent the replacement of the top tuple in the intention by
the tuples in the applicable plan.

(4), (5), (6), (7) and (8) process the top deed in the intention handling the
instruction to add a goal (depending upon whether the goal is already achieved
or not), add a belief, drop a belief and execute an action respectively. (e, d);ii
represents the addition of the tuple (e, d) to the top of the intention i. do(a)
represents the execution of an action in some external environment. These rules
make a check on the top deed in the intention to see what type it is (e.g. the
addition of a belief, the deletion of a goal). We represent these checks implicitly
using the notation: a for an action; +b for a belief addition; −b for a belief
removal; and +!g for a goal addition.

(9) handles perception. A set of Percepts are gathered from the environ-
ment. New percepts are added as intentions to add a belief. Out of date percepts
(i.e., percepts in the belief base that can no longer be perceived) are handled by
creating a new intention to remove them.

3 An AIL-based Framework for Omniscient Debugging
Driven Explanations for Cognitive Agents

As noted above, omniscient debugging was developed with the intention of sup-
porting explanations in the form of answering why- and why-not-questions as
outlined in [16] and [33]. The implementation of omniscient debugging in GOAL
had already identified a number of key events that were needed in an omniscient
trace. Since both GOAL and the AIL were implemented in Java it was possible
to port much of the framework for efficient storage of event traces directly from
GOAL to the AIL. The only necessary step was identifying additional events
and agent states that needed storing.

Omniscient debugging for GOAL focused on the changes in agent goals and
beliefs as the key events underpinning a trace. We used the analysis from sec-
tion 2.3 to extend this to 8:
1. Creation of intention, i: crei(i).
2. Selection of intention, i: seli(i).

7 This somewhat baroque mechanism has its roots in Gwendolen’s origin as an in-
termediate language into which all BDI languages could be translated [11].

8 Note this is not the complete set of events shown in figure 1. This is elaborated
further in section 3.1

8 Authors Suppressed Due to Excessive Length

3. Successful evaluation of guard, g for (applicable) plan π, with unifier, θ in
intention, i: bel(π, g, θ, i).

4. Selection of an applicable plan, (e, ds) in intention, i: selp(e, ds, i).
5. Execution of action, a, by intention i: act(a, i).
6. Adding or removing goal, g, by intention i: addg(g, i), delg(g, i).
7. Adding or removing belief, b by intention i: addb(b, i), delb(b, i).
8. Modification of intention, i, by adding or removing tuples, ts: add(ts, i),
del(ts, i).
Intentions are stored in events in their current state. In order to track the

evolution of intentions in traces more easily, we extended intentions with an ID
number, k, and will use the notation ik to represent that intention, i, has ID
number, k. Mostly we will omit ID numbers except where they are necessary to
understand the construction of explanations.

3.1 Adaptation to Gwendolen

Commands to log these events were embedded in relevant parts of the AIL
toolkit, primarily in classes used to implement transition rules in reasoning cy-
cles. This is why in Figure 1 we were able to annotate the transitions in the
Gwendolen semantics with the associated events. Given Gwendolen always
creates an intention when beliefs are changed and modifies the current intention
when a goal is posted we do not use addg(g, i), delg(g, i), or delb(b, i) in Gwen-
dolen traces and only use addb(b, start) for the addition of initial beliefs. We
rely instead on crei(i) and add(ts, i).

We added a further event just for Gwendolen programs which was the
generation of a set of applicable plans, A for some intention, i: genp(A, i).

In Figure 1 we reference two further constructs, Γ and Π, these represent
situations where one transition in the semantics generates several events in the
trace. Γ logs each successful guard evaluation for plans in ∆ as an event in
the trace and associates them with the relevant applicable plan. Π logs the
creation of the intentions caused by the addition and removal of beliefs following
perception.

3.2 Trace Construction and Visualisation

The way in which these events are presented to an agent programmer, i.e. as
a log of the execution, is often overlooked. However, an effective and efficient
execution log is vital to the debugging process [38]. Effective here means a log
contains sufficient information for an agent programmer to get insight into the
behaviour of an agent program. Efficient here means that only the information
that potentially provides such insights is provided in a log in a concise manner.
Arguably, a trace for an agent program contains at least the information needed
to construct such a log.

Recording events (i.e., tracing) is an important step that facilitates later
visualisation, explanation, and other forms of processing of the execution of an

Title Suppressed Due to Excessive Length 9

agent program. Moreover, in order to not significantly influence the execution of
a traced program, this has to be done as efficiently as possible.

We were able to use the work of Koeman et al. [18] more or less directly to
implement tracing in the AIL with these desirable properties.

3.3 From Traces to Explanations

For answering a why-question, a list of recorded events (i.e, a trace) is mapped
to a chain of reasons (i.e., an explanation). Reasons thus represent a selection
of directly connected events that might span over large parts of the trace. For
example, the event of adopting a goal can be directly connected to the event
of evaluating the guard of the plan in which it was adopted, in between which
many other events could be present in the trace (e.g., the evaluations of other
guards). Based on the known ordering of (types of) events, an efficient algorithm
can be constructed for deducing reasons from them.

3.4 Why-Questions in Gwendolen

In our initial prototype we consider only the answering of why-questions, leaving
consideration of why-not-questions (and their interaction with why-questions) to
further work.

In order to generate explanations we need to link each of the traced events to
a local explanation as outlined particularly in [33] but also implied in [16]. To do
this the explanation had to be grounded in the specific language, Gwendolen,
under consideration but nevertheless could be fitted into a general framework.

We consider some event e occurring at step, N , in a trace t and assume, fol-
lowing [33], the existence of a language specific function why such that why(eN , t)
returns some representation of an explanation. This representation may recur-
sively refer to some previous event(s) which can also be expanded and so on, if
desired, all the way back to the start of program execution. However, our focus
on end users means that explanations should have a default cut-off point and
are not unwrapped further unless requested by the user. These cut-offs are the
reasons why a plan was selected and the reason why an intention was created.

Figure 2 shows the algorithm for constructing why for Gwendolen.
As noted, why(eN , T) can be read as “why did e occur at step N in trace

T” where e is one of our traced events. We can also ask why some formula is
believed at step N , why(bN , T), and why some formula is a goal at step N ,
why(!gN , T). The left hand side of each equation then constructs an explana-
tion presented as an expression – reasons joined by because or and. We use ∨
to represent situations where there is a choice of possible explanations. So, for
instance in (10) the reason an applicable plan is selected is because the guard
g was believed and either the event e created an intention (as happens when
beliefs are posted in Gwendolen) or e was added to an intention (as happens
when goals are posted in Gwendolen). In constructing an explanation we al-
ways select the most recent event that satisfies the formula so, again in (10),

10 Authors Suppressed Due to Excessive Length

why(selp((e, ds), ik)N , T) =bel((e, ds), g, θ, i′k)N′

and (crei((e, ε)k)N′′ ∨ add((e, ε), i′′k)N′′) (10)
why(bN , T) =crei((e,+b))N′ because why(crei((e,+b))N′ , T)

∨ addb(b, start) (11)
why(!gN , T) =add((+!g, ε), i)N′ because why(add((+!g, ε), i)N′ , T)

∨ crei((e,+!g), i)N′ because why(crei((e,+!g), i)N′ , T)
(12)

why(add((+!g, ε), ik)N , T) =selp((e, ds), i′k)N′ because

why(selp((e, ds), i′k)N′ , T) ∧+!g ∈ ds
∨ crei((e,+!g)k)N′ because why(crei((e,+!g)k)N′ , T)

(13)
why(act(a, ik)N , T) =selp((e, ds), i′k)N′ because

why(selp((e, ds), i′k)N′ , T) ∧ a ∈ ds (14)
why(crei((start, d))N , T) =start (15)

why(crei((percept, d))N , T) =percept (16)
why(crei((e, ε)k)N , T) =selp((e, ds), ik)N′ because

why(selp((e, ds), ik)N′ , T) ∧ e ∈ ds (17)

Fig. 2. Why questions in Gwendolen

bel((e, ds), g, θ, i′k)N ′ means that N ′ is the most recent step in the trace before
N where a matching event occurs. Moreover we need the previous events to
have created or manipulated the same intention (and Gwendolen’s intention
selection mechanism means that other intentions may have been manipulated in
between selecting a plan and creating the intention) so we track the intention
ID number, k, to ensure we are considering the events occurring in the correct
intention.

(11) and (12) ask why something is believed at step N or is a goal at step N
and the answer in the first case is that at some previous step an intention was
created to add the belief or it was an initial belief, and in the second case that
either the goal event was posted to an intention or an intention was created to
add the goal (as happens with the initial goals).

(13) asks why some goal was posted to the top of an intention, this is either
because a plan was selected previously in the intention which included the post-
ing of the goal as a deed (+!g ∈ ds) or because an intention was created to post
the goal.

An action (14) is taken because some plan was selected that included the
action in its deeds.

There are three reasons why an intention may have been created: because it
is an initial goal or belief (15), because something was perceived (16), or because
a plan was selected which included posting the event in its deed stack.

Title Suppressed Due to Excessive Length 11

Our framework is similar in conception and presentation to that in [33]. We
have in general introduced a pattern of e because why(e, T) where [33] normally
only has why(e, T). This is motivated in part by our focus on end users instead of
programmers: we think it important that explanations mention that “a plan was
selected which contained the deed” (which is how we render selp((e, ds), i)∧(d ∈
ds) into natural language) and then state why that plan was selected. Winikoff
[33] leaves this implicit and the explanation is only for why the plan was selected.
Winikoff [33] is also concerned with a number of other events in a trace – for
instance where some deed is not the first to be executed in the body of a plan,
then part of the explanation for the its execution includes that the previous deeds
were successful. We have taken the view that end users will not generally consider
“and the parts of the plan before this succeeded” as part of an explanation,
though we may well need to incorporate aspects of this when we look at why-
not-questions (i.e., something may not have happened because a previous deed
failed).

Other differences arise from differences between the semantics of Gwen-
dolen and AgentSpeak.

3.5 Natural Language Presentation

To make the printing of reasons (and thus also events) suitable for end-users,
additional steps are needed. First, we propose a predicate dictionary that pro-
vides a mapping of predicates to strings (e.g., ‘state(X)’ to ‘the robot is in state
X’). Second, an internal translation of specific programming symbols is required
(e.g., ’+!’ to ‘added the goal’).

3.6 Implementation

The AIL is implemented in Java. Therefore we were able to create an abstract
class for events and a framework for storing and presenting visualisations based
on the work in [18]. We were then able to create specific event types for the
events of interest. We extended the visualiser with an interface to allow why-
questions to be asked – specifically “why did you perform this action?”, “why
did you hold this belief?” and “why did you have this goal?”.

We then constructed a specific explanation mechanism for the Gwendolen
language based on the algorithm in Figure 2. The details of this required some
additional events to be tracked – for instance in order to correctly identify the
plan which caused some deed to be placed on an intention it was necessary
to extract information both from the generation of plans in stage B and the
selection of a plan from the set in stage C of the Gwendolen reasoning cycle 9.

The AIL comes with a flexible configuration mechanism based on that in
JavaPathFinder [28]. We adapted the underlying AIL code to store events in a
trace if tracing was enabled.
9 We omit the gory details here, instructions for accessing the source code can be
found in section 6.

12 Authors Suppressed Due to Excessive Length

We also implemented a pretty printing mechanism in the AIL which allowed
languages to customise a pretty printer for the presentation of traces. These
pretty printers could be further customised by the use of application specific
dictionaries specifying natural language substitutions for predicates appearing
both traces and explanations.

This gave us a flexible and extensible framework for implementing omniscient
debugging in order to enable why-questions in AIL languages.

4 Evaluation

Our current implementation is a prototype only so a full evaluation has yet to
be undertaken. However, it is possible to present initial results.

4.1 Traces in Gwendolen for Tutorial examples

The AIL comes with an extensive set of examples based on tutorials for the
framework, the Gwendolen language, and the AJPF model-checker [10]. We
used these as an ongoing driver for development of our framework – in particular
to help settle on appropriate pretty printing conventions. Figure 3 shows part
of a pretty printed version of the event trace for one of these examples as it is
constructed 10. Our visualiser for traces is shown in Figure 4.

selected Intention 1: add the goal achieve "the robot is holding rubble".
confirmed Intention 1: add the goal achieve "the robot is holding rubble"
can still be processed.
generated 1 applicable plan(s): continue processing: add the goal achieve
"the robot is holding rubble" for an event.
selected continue processing: add the goal achieve "the robot is holding
rubble".
added achieve "the robot is holding rubble" to the agent’s goals.
modified intention by posting an event to become Intention 1: respond to
the event start which has no plan yet AND add the goal achieve "the robot
is holding rubble".
selected Intention 1: respond to the event start which has no plan yet
AND add the goal achieve "the robot is holding rubble".

Fig. 3. A Pretty Printed Event Trace for a Gwendolen program

10 NB. It is generally accepted that end users prefer natural language presentations
while developers often prefer something more compact so this log presents the events
with end users in mind, though it remains much more verbose than is required for
an explanation.

Title Suppressed Due to Excessive Length 13

Fig. 4. Trace Visualiser

4.2 Explanations for Gwendolen for Tutorial examples

Figure 5 shows an example explanation (for why the robot performed the action
lift_rubble). Sections of the explanation underlined in blue can be clicked on
to generate further explanations – in this case for “why do you believe at(5, 5)”.

4.3 Potential Use Case: Self-certifying Offshore Assets

In order to validate our intuitions about appropriate explanations for end users
we investigated a prototype agent program for surveying offshore assets such as
oil rigs and wind farms [12, 13]. This agent guides an unmanned aircraft that
must select a suitable path between the legs of an oil rig based on wind speed,
wind direction, and perceived tolerance to risks. Guided by the developers, we
produced a predicate dictionary for the application which converted the pro-
gram’s internal representation into natural language – e.g., enactRoute(route2,
t2) becomes enact route2 with target t2 and so on.

A sample explanation is shown in Figure 6
These explanations were shown to the developers who confirmed that they

provided explanations of use to their end users (considered to be experts in
unmanned aircraft operation and offshore asset inspection), though obviously
further work is needed on the presentation (e.g., performing unifications rather
than showing the unifier).

14 Authors Suppressed Due to Excessive Length

Fig. 5. Generating an Explanation

Fig. 6. Explanation of Route Selection

Title Suppressed Due to Excessive Length 15

4.4 Traces and Explanations for Other Languages

To evaluate our claim that tracing in the AIL is generic we enabled tracing for
another language implemented in the AIL, without any further customisation
for the language. The language selected was pbdi [4], a reimplementation of a
BDI library for Python11 intended to allow agents written using the library to be
verified. We generated an omniscient trace for a simple program in this language
(one which stops the operation of a small Pi2Go robot using a command done
when the switch on the side of the robot is pressed). A sample trace is shown in
Figure 7.

added obstacle_left to the agent’s beliefs.
added switch_pressed to the agent’s beliefs.
evaluating the guard of 1 :: +!_aAny||True||done||[]
1 :: +!_aAny||switch_pressed||print("Stopping Agent")||[]
resulted in True.

evaluating the guard of 2 :: +!_aAny||True||print("Obstacle: ",agent.sensor_value("obstacle_centre"))||[]
resulted in True.

generated 2 applicable plan(s): 1 :: +!_aAny||True||done||[]
1 :: +!_aAny||switch_pressed||print("Stopping Agent")||[]
, 2 :: +!_aAny||True||print("Obstacle: ",agent.sensor_value("obstacle_centre"))||[]
for an event.

selected 1 :: +!_aAny||True||done||[]
1 :: +!_aAny||switch_pressed||print("Stopping Agent")||[]
.
created [empty]::

* +state||True||print("Stopping Agent")||[]
+state||True||done||[]

.
selected [empty]::

* +state||True||print("Stopping Agent")||[]
+state||True||done||[]

.
Stopping Agent
performed print("Stopping Agent").

performed done.
removed obstacle_left from the agent’s beliefs.
removed switch_pressed from the agent’s beliefs.

Fig. 7. A Sample Trace for BDIPython

As can be seen, the lack of language specific pretty printing for plans renders
this less readable, but nevertheless a clear trace has been generated of the key
events in the execution of the program.
11 https://github.com/VerifiableAutonomy/BDIPython

16 Authors Suppressed Due to Excessive Length

5 Conclusion

We sought to combine omniscient debugging and answering why-questions for
cognitive agent programs in order to generate explanations for end users. To do
this we ported omniscient debugging to the AIL toolkit and thus demonstrated
its general applicability beyond the GOAL language for which it was developed.

On top of the traces generated by the omniscient debugger we were able to
construct explanations for programs in the Gwendolen language. To do this we
extended work by [16] and [33] aimed at answering why-questions for developers.
This extension involved adding the capability to handle multiple intentions via
the tracking of intention IDs and the use of pretty printing and application
specific dictionaries to render explanations into natural language.

While this prototype system has yet to be formally evaluated, informal feed-
back suggests that the end user explanations are appropriate for the intended
purpose. A major piece of further work will involve integration of the frame-
work into an application being developed for offshore inspection of oil rigs and
wind farms [12, 13] and the evaluation of the generated explanations by the
application’s users. Work is also needed to integrate the answering of why-not-
questions into the framework in order to provide constrastive explanations as
discussed in [19] which argues that why-questions answer counter-factuals. Mi-
nor work focused on improving the presentation of traces and explanations is also
required. We would also like to investigate the use of tracing/explanation levels
analogous to the logging levels used by Java in order to increase the flexibility
of the provided explanations allowing users to “drill down” into more detail if
the provided explanation does not meet their needs.

6 Open Data Statement

The source code for the AIL is available from http://mcapl.sourceforge.net
where the work in this paper can be found in the omniscient branch of the
git repository. The version discussed here will be archived in the University of
Liverpool data catalog in due course.

Acknowledgments

This research was partially funded by EPSRC grants Verifiable Auton-
omy (EP/LO24845/1) and the Offshore Robotics for Certification of Assets
(EP/RO26173) Robotics and Artificial Intelligence Hub.

Title Suppressed Due to Excessive Length 17

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Sys-
tems in AgentSpeak Using Jason. John Wiley & Sons (2007)

2. Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): Multi-
Agent Programming: Languages, Platforms and Applications. Springer
(2005)

3. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University
Press (1987)

4. Bremner, P., Dennis, L.A., Fisher, M., Winfiled, A.F.: On proactive, trans-
parent and verifiable ethical reasoning for robots. Proceedings of the IEEE
special issue on Machine Ethics: The Design and Governance of Ethical AI
and Autonomous Systems (2019), to Appear

5. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan expla-
nations as model reconciliation: Moving beyond Explanation as Soliloquy. In:
subbarao Kambhampati (ed.) Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence. pp. 156–163 (2016)

6. Charisi, V., Dennis, L.A., Fisher, M., Lieck, R., Matthias, A., Slavkovik,
M., Sombetzki, J., Winfield, A.F.T., Yampolskiy, R.: Towards moral au-
tonomous systems. CoRR abs/1703.04741 (2017), http://arxiv.org/abs/
1703.04741

7. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent
systems in 3APL. In: [2], chap. 2, pp. 39–67

8. Dennis, L., Fisher, M., Webster, M., Bordini, R.: Model check-
ing agent programming languages. Automated Software Engineer-
ing pp. 1–59 (2011), http://dx.doi.org/10.1007/s10515-011-0088-x,
10.1007/s10515-011-0088-x

9. Dennis, L.A.: Gwendolen semantics: 2017. Tech. Rep. ULCS-17-001, Uni-
versity of Liverpool, Department of Computer Science (2017)

10. Dennis, L.A.: The MCAPL Framework including the Agent Infrastructure
Layer and Agent Java Pathfinder. The Journal of Open Source Software
3(24) (2018)

11. Dennis, L.A., Bordini, R.H., Farwer, B., Fisher, M., Wooldridge, M.: A
common semantic basis for BDI languages. In: Fifth International Work-
shop on Programming in Multi-Agent Systems (ProMAS’07). Lecture Notes
in Artificial Intelligence, vol. 4908, pp. 124–139. Springer (2008), http:
//dx.doi.org/10.1007/978-3-540-79043-3_8

12. Dinmohammadi, F., Page, V., Flynn, D., Robu, V., Fisher, M., Patchett, C.,
Jump, M., Tang, W., Webster, M.: Certification of safe and trusted robotic
inspection of assets. In: 2018 Prognostics and System Health Management
Conference (PHM-Chongqing). pp. 276–284 (Oct 2018)

13. Fisher, M., Collins, E., Dennis, L., Luckcuck, M., Webster, M., Jump, M.,
Page, V., Patchett, C., Dinmohammadi, F., Flynn, D., Robu, V., Zhao, X.:
Verifiable self-certifying autonomous systems. In: 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). pp.
341–348 (Oct 2018)

18 Authors Suppressed Due to Excessive Length

14. Harbers, M.: Explaining Agent Behaviour in Virtual Training. Ph.D. thesis,
SIKS Dissertation Series (2011), no. 2011-35

15. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fal-
lah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent
Programming: Languages, Tools and Applications. pp. 119–157. Springer
US, Boston, MA (2009)

16. Hindriks, K.V.: Debugging is explaining. In: Rahwan, I., Wobcke, W., Sen,
S., Sugawara, T. (eds.) PRIMA 2012: Principles and Practice of Multi-Agent
Systems. pp. 31–45. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

17. Ko, A.J., Myers, B.A.: Extracting and answering why and why not questions
about Java program output. ACM Transactions on Sotware Engineering and
Methodology 20(2), 4:1–4:36 (2010)

18. Koeman, V.J., Hindriks, K.V., Jonker, C.M.: Omniscient debugging for cog-
nitive agent programs. In: Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence. pp. 265–272. IJCAI’17, AAAI Press (2017)

19. Miller, T.: Explanation in artificial intelligence: Insights from the social sci-
ences. Artificial Intelligence 267, 1–38 (Feb 2017)

20. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine.
In: [2], pp. 149–174

21. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In:
Proc. 2nd Int. Conf. Principles of Knowledge Representation and Reasoning
(KR&R). pp. 473–484. Morgan Kaufmann (1991)

22. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In:
Proc. Int. Conf. Knowledge Representation and Reasoning (KR&R). pp.
439–449. Morgan Kaufmann (1992)

23. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proc.
1st Int. Conf. Multi-Agent Systems (ICMAS). pp. 312–319. San Francisco,
USA (1995)

24. Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: Agents Breaking Away: Proc. 7th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World. LNCS, vol. 1038, pp.
42–55. Springer (1996)

25. Sheh, R.K.: “Why did you do that?” explainable intelligent robots. In:
AAAI-17 Workshop on Human-Aware Artificial Intelligence (2017)

26. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Sys-
tems: Ethically aligned design: A vision for prioritizing human well-being
with autonomous and intelligent systems. version 2. Report, IEEE (2017)

27. Turner, J.: Robot Rules: Regulating Artificial Intelligence. Palgrave Macmil-
lan (2019)

28. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking
programs. Automated Software Engineering 10(2), 203–232 (2003)

29. Webster, M.P., Fisher, M., Cameron, N., Jump, M.: Formal methods for the
certification of autonomous unmanned aircraft systems. In: Proc. 30th Int.
Conf. Computer Safety, Reliability and Security (SAFECOMP). LNCS, vol.
6894, pp. 228–242. Springer (2011)

Title Suppressed Due to Excessive Length 19

30. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In:
Programming Multi-Agent Systems, LNCS, vol. 7837, pp. 54–71. Springer
(2013)

31. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. Journal
of Artificial Intelligence Research 51 (2015)

32. Winikoff, M.: BDI agent testability revisited. Autonomous Agents and
Multi-agent Systems 31(1094) (2017)

33. Winikoff, M.: Debugging agent programs with Why? questions. In: Proceed-
ings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
pp. 251–259. AAMAS ’17, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2017)

34. Winikoff, M., Dignum, V., Dignum, F.: Why bad coffee? explaining agent
plans with valuings. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch,
F. (eds.) SAFECOMP. LNCS, vol. 9923, pp. 521–534. Spinger (2016)

35. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley &
Sons (2002)

36. Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Applied
Logic Series, Kluwer Academic Publishers (1999)

37. Wortham, R.H., Theodorou, A.: Robot transparency, trust and utility. Con-
nection Science 29(3), 24200247 (2017)

38. Zeller, A.: Why Programs Fail, Second Edition: A Guide to Systematic
Debugging. Morgan Kaufmann Publisheres Inc., San Francisco, CA, USA
(2009)

39. Ziafati, P., Dastani, M., Meyer, J.J., van der Torre, L.: Agent programming
languages requirements for programming autonomous robots. In: Dastani,
M., Hübner, J.F., Logan, B. (eds.) Programming Multi-Agent Systems. pp.
35–53. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

